Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ynthesis-property relation is fundamental to materials science, but many aspects of the relation are not well understood for many materials. Impetus for this paper comes from our recent appreciation for the distinct roles of entanglements and crosslinks in a polymer network. Here we study the synthesis-property relation of polyacrylamide hydrogels prepared by free radical polymerization. Some of the as-prepared hydrogels are further submerged in water to swell either to equilibrium or to a certain polymer content. The synthesis parameters include the composition of a precursor, as well as the polymer content of a hydrogel. Series of hydrogels are prepared along several paths in the space of synthesis parameters. For each hydrogel, the stress-stretch curve is measured, giving four properties: modulus, strength, stretchability, and work of fracture. We interpret the experimentally measured synthesis-property relation in terms of entropic polymer networks of covalent bonds. When the precursor has a low crosslinker-to-monomer molar ratio, the resulting polymer network has on average long polymer segments. When the precursor has a low water-to-monomer molar ratio, the resulting polymer network has on average many entanglements per polymer segment. We show that crosslinks lower strength, but entanglements do not. By contrast, both crosslinks and entanglements increase modulus. A network of highly entangled long polymer segments exhibits high swell resistance, modulus, and strength.more » « less
-
"Developing methods for chemical sensing is of importance in broad ap plications, including food safety, healthcare, and ecology. The work herein describes an approach to chemical sensing by interfacial voltage. A test electrode is coated with a dielectric and a receptor. When the test electrode contacts an electrolyte, the receptor adsorbs an analyte from the electrolyte. The adsorption generates an interfacial voltage, a measurement of which reports the concentration of the an alyte. This design de-integrates two aspects of sensing: adsorption and detection. Consequently, the test electrode can be made of any elec tronic conductor. This flexibility enables sensors to be fabricated without microelectronic facilities. Several species of ions and organic molecules are detected, and a wearable chemical sensor worn on a fingertip is demonstrated. Needle-shaped electrodes are developed to test soft biological tissues. Chemical sensing by interfacial voltage holds promise for the development of ubiquitous sensing technology."more » « less
-
Significance We develop temperature sensors on the basis of charges accumulated at the electrolyte/dielectric interface and dielectric/electrode interface. The accumulated charges make the temperature sensors self-powered, which simplifies circuit design and enables portable sensing. The sensors are stretchable, but deformation does not affect temperature sensing. The sensors have high sensitivity and fast response. They can be made small and transparent. Such temperature sensors open new possibilities to create human–machine interfaces and soft robots in healthcare and engineering.more » « less
-
Lap shear and peel are common tests for soft materials. Their results, however, are rarely compared. Here we compare lap shear and peel as tests for measuring toughness. We prepare specimens for both tests by using stiff layers to sandwich a layer of a polyacrylamide hydrogel. We introduce a cut in the hydrogel by scissors, pull one stiff layer at constant velocity, and record the force. In lap shear, the force peaks and then drops to zero, the cut grows unstably through the entire hydrogel, and the peak force is used to determine toughness. In peel, the force peaks and then drops to a plateau, the cut grows in the hydrogel in steady state, and the plateau force is used to determine toughness. Our experimental data show that the average values of toughness determined by lap shear and peel are comparable. The peak forces in both tests scatter significantly, but the plateau force in peel scatters narrowly. Consequently, toughness determined by lap shear scatters more than toughness determined by peel. We hypothesize that the peak forces scatter mainly due to the statistical variation of the cuts made by scissors, and test the hypothesis using two additional sets of experiments. First, after a cut is made by scissors, we pre-peel the specimen to extend the cut somewhat, and then measure toughness by lap shear and peel. The peak force in lap shear scatters less, and the peak force in peel is removed. Second, we prepare cuts using spacers of various thicknesses, and find that the peak forces in both lap shear and peel vary with the thickness of the spacer. These findings clarify the use of lap shear and peel to characterize soft materials.more » « less
-
A plastic may degrade in response to a trigger. The kinetics of degradation have long been characterized by the loss of weight and strength over time. These methods of gross characterization, however, are misleading when plastic degrades heterogeneously. Here, we study heterogeneous degradation in an extreme form: the growth of a crack under the combined action of chemistry and mechanics. An applied load opens the crack, exposes the crack front to chemical attack, and causes the crack to outrun gross degradation. We studied the crack growth in polylactic acid (PLA), a polyester in which ester bonds break by hydrolysis. We cut a crack in a PLA film using scissors, tore it using an apparatus, and recorded the crack growth using a camera through a microscope. In our testing range, the crack velocity was insensitive to load but was sensitive to humidity and pH. These findings will aid the development of degradable plastics for healthcare and sustainability.more » « less
An official website of the United States government
